

7th International Scientific Conference

Technics and Informatics in Education

Faculty of Technical Sciences, Čačak, Serbia, 25-27th May 2018

Session 3: Engineering Education and Practice UDC: 004.9

 285

Creating an Android Weather Forecast

Application in the Android Studio

Slobodan Aleksandrov1*, Saša Vulović 2
1 College of Applied Mechanical and Technical Engineering Trstenik, Serbia

2 Webelinx, Niš, Srbija
* slobodan.aleksandrov@vtmsts.edu.rs

Abstract: A large number of requests that can be made on a computer can now be realized on

smartphones or tablets. Because of their high hardware performance, mobility and low cost, smart mobile

devices take on the primacy of classical computers in many spheres of life. The smart mobile software

market is rapidly increasing, and the need for experts in this field is enormous. In this paper an analysis

of operating systems of mobile devices was performed, the most commonly used development

environment for application programming, and the process of development of weather forecast

application on the Android platform is shown.

Keywords: Android; Java; smartphones; application

1. INTRODUCTION

The development and application of information

and communication technologies (ICT) brings

major changes in all segments of the society.

Expansion of the development of smart mobile

devices at the beginning of the 21st century has

opened a new large software market, ranging

from the development of operating systems to the

development of applications for various

applications. The leader in the mobile operating

system market is the Android platform with

74.23%, followed by the iOS platform with

20.84%, while all other mobile operating systems

have a negligible small market share ([1], March

2018). Various development environments are

used for programming mobile applications:

Firebase, iOS SDK, Visual Studio, OutSystems,

Xcode, Fabric, Android Studio and others. It is

very important to define basic knowledge and

modern software packages necessary for the

development of software in the field of mobile

devices. As the changes in Information

Technology (IT) are very fast, it is necessary that

the school system at all levels is flexible and

modular, so it can quickly respond to the needs of

the economy and society.

2. DEVELOPING A MOBILE ANDROID

APPLICATION FOR WEATHER FORECAST

This paper presents the process of developing a

mobile android application for the weather

forecast. To create this application, the

development environment Android Studio, as well

as the Java programming language, was used. In

addition to Java, starting with Android Studio

3.0.0, the Kotlin programming language is

officially supported. Within this work, Android

Studio 3.0.1 and Java programming language was

used. When creating each application, it is

necessary to create a new project first. Creating a

new project takes place in a few simple steps.

When launching Android Studio, we should select

the "Start a new Android Studio project" option

and assign the name for project, in this case it will

be "WeatherApp" (Figure 1).

Figure 1. Development enviroment Android

Studio 3.0.1

In the next step, we choose for which type of

devices the application is going to be made:

mobile smartphones and tablets, smart watches or

televisions, as well as versions of the android

operating system (Figure 2). In the final step,

there is a possibility that the new project has pre-

defined dedicated screens, such as the Google

Maps screen, the Login screen, the Settings

screen, and etc.

Figure 2. Device and android version selection

mailto:slobodan.aleksandrov@vtmsts.edu.rs

Engineering Education and Practice Aleksandrov and Vulović

 286

If no pre-defined screens are required, we select

"Empty Activity" option and assign name for the

activity, after which the process of creating a new

project is completed. Before the development of

application, it is necessary to get acquainted with

the basic components that are used when creating

android applications. These are "Activity",

"Service", "Broadcast Receiver" and "Content

Provider" [2]. Activity is one screen of the

application. It consists of two part, one is the xml

file, which represents the user interface, a screen

that is visible to the user. The second part is a

java class that responds to events when a user

interacts with the screen. Each multi-screen

application generally has different activity for each

screen. The service is similar to activity, with the

difference that it does not have an xml file and

serves to perform tasks in the background so that

the performance of the application would be

better. The selected service is executed on the

main thread, but with certain classes such as

"Handler" or "AsyncTask" the code executed in the

service can be transferred to the background

thread. The service can be used to play music in

the background, download data from the server,

etc. Broadcast receivers are used to reply to

broadcast messages that are sent from other

activities or the android system itself. For

example, if an application needs to know if the

phone's screen is turned on or off, it can register

and listen to the messages sent by the system, in

this particular case, the messages for

"SCREEN_ON" and "SCREEN_OFF" in order to get

the appropriate information. Content providers

serve to obtain certain data and are mainly used

to communicate with the database. For example,

using the content provider, we can get SMS

messages that are stored on the device or missed

calls.

Another important element in creating android

applications is knowledge of the life cycle of the

activity. Each activity has its own life cycle and

phases in that cycle. There are several stages in

which an activity can be found and through the

predefined methods it informs the programmer in

which phase it is located. Figure 3 shows the life

cycle of the activity.

The "onCreate()" method is called when activity is

first created. In this method, the initialization of

the objects being used is mainly carried out. The

"onStart()" method is called when activity is first

visible to the user. When the "onResume()"

method is invoked, the user can interact with the

application. When the application switches to the

background, the method "onPaused()" is called.

The "onStop()" method is called when the

application is no longer visible to the user after

which either "onDestoy()" or "onRestart()" is

called. If the application is "killed" by the user or

system, the "onDestoy()" method is called, and if

Figure 3. The Activity Lifecycle [3]

it is restarted, the "onRestart()" method is called

after which the "onStart()" method is immediately

invoked. To create a weather app, we need one of

the services that provide information about the

current weather forecast for a specific location.

There are various services that provide this

information, some are free, some are commercial,

and there are also those that represent a

combination of these two types, there are parts of

the information that are the free, and also the

parts that is paid. During the implementation of

this application, the service "Dark Sky" was used,

which can be found at

https://darksky.net/forecast/40.7127,-

74.0059/us12/en. The first step is to create an

account on the site using email addresses and

passwords. After creating an account, the key that

is necessary for obtaining information about the

weather is obtained. The site provides details on

the information that can be obtained and how this

service works. Data is obtained as a json file.

Figure 4 shows the process of obtaining a key.

Figure 4. Creating account for „Dark Sky“ service

When creating a new project, the activity for

application is automatically generated and it is

called "Main Activity". As already mentioned, it

consists of a java class called "Main Activity"

which inherits the "Activity" class and the xml file

that will represent the user interface called

Engineering Education and Practice Aleksandrov and Vulović

 287

"activity_main.xml". The next step in developing

this application is to create a user interface using

the xml file and certain components such as

"TextView", "ImageView", and components that

allow the layout of components on the screen such

as "RelativeLayout" and "LinearLayout". These

components can be added via xml file or via java

code in the java class. In this case, the

components are added directly to the xml file. As

the names themselves suggest, "TextView" is

used to display text, and "ImageView" to display

images. Each component serves to display certain

information on the screen. From the above, it is

necessary to add more "TextView" components

that will be used to display the text and also

weather information for the location for which we

search weather forecasts, the time of the last

update, a brief description of the weather

forecast, the current temperature, as well as the

humidity, pressure, wind speed and UV indexes.

"ImageView" are used to display graphic elements

on the interface, such as background images,

graphics that represent the current weather

situation and etc. The size and color of the text as

well as the size of the images are also defined in

the xml file. After adjusting and positioning the

components on the screen, we need to connect

the elements from the xml file with the java class,

in order to be able to display the data that is

obtained, and also we need to implement the logic

for collecting data from the server. It is important

to note that each component added to the xml file

must have its unique "id" so that it can be

connected to the java class. Figure 5 shows the

created xml file.

Figure 5. Creating xml file

After creating the interface, it is necessary to

connect the xml file with the java class, as well as

the components that are used in the xml file.

When creating a new activity, the connection

process of java classes and xml files takes place

automatically by calling the "setContentView

(R.layout.activity_main)" method that is called in

the "onCreate()" method. The next step is to

connect a component from an xml file to a java

class by creating an object of the appropriate type

and calling the "findViewById (int id)" method.

Connecting a component for displaying text can

take the following form: TextView txtTemperature

= findViewById (R.id.txtTemperature). It is

important that each component in the xml file has

its own unique id so the connection would be

successful. The same principle applies to

connecting other components, such as

ImageView. After this step, it is possible to

dynamically display text on the screen by simply

calling the "setText (String s)" method using the

TextView object. The "setImageResource

(Resourse id)" or "setImageBitmap (Bitmap bm)"

can be used to set up images using the

ImageView object.

In order to display the desired textual and

graphical data on the user interface, it is

necessary to load these data from the service on

which the user account is created. Information

about current temperature, brief description of

current weather conditions, pressure, humidity,

wind speed and direction data are required. To

obtain these data, an auxiliary class is created

under the name "MyWeather". This class will

contain all the information that is needed for

display on the screen. The object of this class is

initialized when the application receives a

response from server. Before communicating with

the server, it is necessary to determine the

geographical length and width of the place where

the user is located. To obtain these data, it is

necessary to grant the appropriate permissions:

"android.permission.ACCESS_FINE_LOCATION"

and

"android.permission.ACCESS_COARSE_LOCATION.

Also, for the communication with the server, the"

android.permission.INTERNET" permission is

required. After the granting this permission, using

the "LocationManager" we can detect the current

geographic position of the user. The current

location information is obtained in the pre-defined

method "public void onLocationChanged (Location

location)" that passes the "Location" object. Using

"Location" object, we can get location information

and then the request is sent to the server to get

weather information. The request is sent via the

auxiliary AsyncTaskHelper class that inherits the

AsyncTask class. The reason for using the class

that inherits the AsyncTask class is that in this

way, the request will be sent to the server in a

background thread, so the main thread of the

application is not affected. This class has its own

method "String doInBackground (Void ... voids)"

within which the request is defined, and

depending on the performance of this method, it

returns the corresponding string as a return

parameter. Sending requests is done by writing

the following code:

URL url;

HttpURLConnection urlConnection = null;

try {

url = new URL(query);

urlConnection = (HttpURLConnection)

url.openConnection();

Engineering Education and Practice Aleksandrov and Vulović

 288

BufferedReader r = new BufferedReader(new

InputStreamReader(urlConnection.getInputStream()

));

StringBuilder total = new StringBuilder();

String line;

while ((line = r.readLine()) != null) {

total.append(line);

}

ParseJSON(total.toString(),myWeather);

return "OK";

}

catch (Exception e)

{

return "Error";

}

Using "HttpURLConnection" and "URL", a request

is sent to a specific address, in this case it is the

address provided by the Dark Sky service, after

which desired data is received. Data is obtained in

the form of an json file and using the method

"ParseJSON(String data, MyWeather myWeather)"

we preform data parsing that is received from

server and at this point we initialize the

"MyWeather" object. The following code is created

for data parsing:

private void ParseJSON(String data,MyWeather

myWeather)

 {

 try {

 JSONObject jsonObject = new

JSONObject(data);

 JSONObject currentWeather =

jsonObject.getJSONObject("currently");

myWeather.setLastUpdate(currentWeather.getInt("t

ime"));

myWeather.setDescription(currentWeather.getStrin

g("summary"));

myWeather.setIcon(currentWeather.getString("icon"

));

myWeather.setTemperature(currentWeather.getDou

ble("temperature"));

myWeather.setHumidity(currentWeather.getDouble(

"humidity"));

myWeather.setPressure(currentWeather.getDouble(

"pressure"));

myWeather.setWindSpeed(currentWeather.getDoubl

e("windSpeed"));

myWeather.setUvIndex(currentWeather.getDouble("

uvIndex"));

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

If there is no error in communicating with the

server or during data parsing, the return

parameter is string "OK", and if an error has

occurred, "Error" string is returned.

AsyncTaskHelper has another important method,

"onPostExecute (String s)" that is called when the

"doInBackground" method is executed. This

method is important because it reads the return

parameter that is sent from "doInBackground"

method. If there were no errors, the main activity

is notified that new weather information has been

received and the user interface is refreshed. In

order to communicate with the activity, an

auxiliary interface has been created, which has

two methods, "onResultSuccess (MyWeather

myWeather)" which is called if "OK" is received

from the "doInBackground" as a return parameter.

In the event that the string "Error" is returned as

the return parameter, the "onResultFailed ()"

method is used to inform the main activity that an

error has occurred. In the end, using

"Populate(MyWeather myWeather)" method main

activity displays the data on the user interface.

The appearance of the user interface after

successful acceptance of data is shown in Figure

6.

Figure 6. User interface for weather application

Below is a presentation of the "Populate" method,

which displays the data:

private void Populate(MyWeather myWeather)

 {

txtCityName.setText(myWeather.getCityName());

txtLasUpdate.setText(myWeather.getLastUpdate());

txtDescription.setText(myWeather.getDescription())

;

txtTemperature.setText(myWeather.getTemperatur

e());

txtHumidity.setText(myWeather.getHumidity());

txtPressure.setText(myWeather.getPressure());

txtWindSpeed.setText(myWeather.getWindSpeed())

;

txtUVIndex.setText(myWeather.getUVIndex());

imgWeatherIcon.setImageResource(getResources().

getIdentifier(myWeather.getIcon(),"drawable",getPa

ckageName())); }

Engineering Education and Practice Aleksandrov and Vulović

 289

3. CONCLUSION

The development of a modern information society

must be based on the application of new ICT

technologies. The use of smart mobile devices in

all segments of society requires the development

of new mobile applications. The global software

market in this area is growing at a tremendous

pace, so the need for education of IT specialists is

very high. This trend of the development of

modern technologies enables the rapid

development of the economy in the IT sector. Of

great importance is the advancement of the

educational system, which must be modular and

dynamic, so that it can quickly implement new

technologies into plans and programs in all of the

levels of education.

REFERENCES

[1] http://gs.statcounter.com/os-market-
share/mobile/worldwide (15.03.2018.)

[2] https://www.tutorialspoint.com/android/andro

id_application_components.htm (16.03.2018.)

[3] https://developer.android.com/guide/compon

ents/activities/activity-lifecycle.html

(16.03.2018.)

http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.tutorialspoint.com/android/android_application_components.htm
https://www.tutorialspoint.com/android/android_application_components.htm
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html

